jueves, 13 de mayo de 2010

Conductividad, resistividad, resistencia y conductancia




Conductancia

se denomina conductancia electrica(G) de un conductor a la inversa de la oposcicion que dicho conductor presenta al movimiento de los electrones en su seno, esto es a la inversa de su resistencia electrica.

la conductacia elèctrica esta relacionada pero no se debe confundir, con la conducciòn que es el mecanismo mediante el cual la carga fluye, ocon la conductividad que es una propiedad del material.

la unidad de medida de la conductancia en el sistema internacional de unidades es el Siemens.

Resistividad

se le llama resistividad al grado de dificultad que encuentran los electrones en su desplazamiento por determinado material.

se designa con la letra (p) y se mide en en ohm por milimetro cuadrado por metro

si dicho material tiene una baja resistividad es muy buen conductor de electricidad de lo contrario, es mal conductor de electricidad ò hasta ser aislante electrico.

Resistencia

se denomina resistencia electrica a la dificultad que presenta un cuerpo al paso de una corriente electrica para circular atravez de este

se simboliza con la letra (R) y se mide en ohmios, es una medida valida para corriente AC y DC

segun sea la magnitud de esta oposcicion se clasifican los materiales entre aislantes, conductores y semiconductores

Conductividad

es la capacidad de un cuerpo de permitir el paso de corriente electrica atraves de si, tambien es definida como la propiedad natural caracteristica de cada cuerpo que representa la facilidad con la que los electrones pueden pasar por el

esta capacidad varia con la temperatura y es una de las caracteristicas mas importantes de los materiales.

lunes, 3 de mayo de 2010

semiconductores y aislantes


MATERIALES SEMICONDUCTORES













Los primeros semiconductores utilizados para fines técnicos fueron pequeños detectores diodos empleados a principios del siglo 20 en los primitivos radiorreceptores, que se conocían como “de galena”. Ese nombre lo tomó el radiorreceptor de la pequeña piedra de galena o sulfuro de plomo (PbS) que hacía la función de diodo y que tenían instalado para sintonizar las emisoras de radio. La sintonización se obtenía moviendo una aguja que tenía dispuesta sobre la superficie de la piedra. Aunque con la galena era posible seleccionar y escuchar estaciones de radio con poca calidad auditiva, en realidad nadie conocía que misterio encerraba esa piedra para que pudiera captarlas.

En 1940 Russell Ohl, investigador de los Laboratorios Bell, descubrió que si a ciertos cristales se le añadía una pequeña cantidad de impurezas su conductividad eléctrica variaba cuando el material se exponía a una fuente de luz. Ese descubrimiento condujo al desarrollo de las celdas fotoeléctricas o solares. Posteriormente, en 1947 William Shockley, investigador también de los Laboratorios Bell, Walter Brattain y John Barden, desarrollaron el primer dispositivo semiconductor de germanio (Ge), al que denominaron “transistor” y que se convertiría en la base del desarrollo de la electrónica moderna.

Los "semiconductores" como el silicio (Si), el germanio (Ge) y el selenio (Se), por ejemplo, constituyen elementos que poseen características intermedias entre los cuerpos conductores y los aislantes, por lo que no se consideran ni una cosa, ni la otra. Sin embargo, bajo determinadas condiciones esos mismos elementos permiten la circulación de la corriente eléctrica en un sentido, pero no en el sentido contrario. Esa propiedad se utiliza para rectificar corriente alterna, detectar señales de radio, amplificar señales de corriente eléctrica, funcionar como interruptores o compuertas utilizadas en electrónica digital, etc.

Lugar que ocupan en la Tabla Periódica los trece elementos con. características de semiconductores, identificados con su correspondiente. número atómico y grupo al que pertenecen. Los que aparecen con fondo.
gris corresponden a “metales”, los de fondo verde a “metaloides” y los de. fondo azul a “no metales”.

Esos elementos semiconductores que aparecen dispuestos en la Tabla Periódica constituyen la materia prima principal, en especial el silicio (Si), para fabricar diodos detectores y rectificadores de corriente, transistores, circuitos integrados y microprocesadores.

Los átomos de los elementos semiconductores pueden poseer dos, tres, cuatro o cinco electrones en su última órbita, de acuerdo con el elemento específico al que pertenecen. No obstante, los elementos más utilizados por la industria electrónica, como el silicio (Si) y el germanio (Ge), poseen solamente cuatro electrones en su última órbita. En este caso, el equilibrio eléctrico que proporciona la estructura molecular cristalina característica de esos átomos en estado puro no les permite ceder, ni captar electrones. Normalmente los átomos de los elementos semiconductores se unen formando enlaces covalentes y no permiten que la corriente eléctrica fluya a través de sus cuerpos cuando se les aplica una diferencia de potencial o corriente eléctrica. En esas condiciones, al no presentar conductividad eléctrica alguna, se comportan de forma similar a un material aislante.

Incremento de la conductividad en un elemento semiconductor

La mayor o menor conductividad eléctrica que pueden presentar los materiales semiconductores depende en gran medida de su temperatura interna. En el caso de los metales, a medida que la temperatura aumenta, la resistencia al paso de la corriente también aumenta, disminuyendo la conductividad. Todo lo contrario ocurre con los elementos semiconductores, pues mientras su temperatura aumenta, la conductividad también aumenta.

En resumen, la conductividad de un elemento semiconductor se puede variar aplicando uno de los siguientes métodos:

  • Elevación de su temperatura

  • Introducción de impurezas (dopaje) dentro de su estructura cristalina

  • Incrementando la iluminación.

Con relación a este último punto, algunos tipos de semiconductores, como las resistencias dependientes de la luz (LDR – Light-dependant resistors), varían su conductividad de acuerdo con la cantidad de luz que reciben.

La conductividad eléctrica de los cuerpos materiales (σ) constituye la capacidad que. tienen de conducir la corriente eléctrica. La fórmula matemática para hallar la. conductividad es la siguiente:




Como se puede apreciar en esta fórmula, la conductividad (σ) se obtiene hallando primeramente el resultado de la recíproca de la resistencia (o sea, 1/R) multiplicándolo a continuación por el resultado que se obtiene de dividir la longitud del material (L) entre su área (A). En esa fórmula se puede observar también que la resistencia (R) es inversamente proporcional a (σ), por lo que, a menor resistencia en ohm de un cuerpo, la conductividad resultante será mayor.



MATERIALES AISLANTES O DIELÉCTRICOS

A diferencia de los cuerpos metálicos buenos conductores de la corriente eléctrica, existen otros como el aire, la porcelana, el cristal, la mica, la ebonita, las resinas sintéticas, los plásticos, etc., que ofrecen una alta resistencia a su paso. Esos materiales se conocen como aislantes o dieléctricos.

Los cuerpos aislantes ofrecen una alta resistencia al paso de la corriente eléctrica. En la foto izquierda. se pueden observar diferentes materiales aislantes de plástico utilizados comúnmente en las cajas de. conexión y en otros elementos propios de las instalaciones eléctricas domésticas de baja tensión, así. como el PVC (PolyVinyl Chloride – Policloruro de Vinilo) empleado como revestimiento en los cables. conductores. En la foto de la derecha aparece, señalado con una flecha roja, un aislante de vidrio. utilizado en las torres externas de distribución eléctrica de alta tensión.

Al contrario de lo que ocurre con los átomos de los metales, que ceden sus electrones con facilidad y conducen bien la corriente eléctrica, los de los elementos aislantes poseen entre cinco y siete electrones fuertemente ligados a su última órbita, lo que les impide cederlos. Esa característica los convierte en malos conductores de la electricidad, o no la conducen en absoluto.

En los materiales aislantes, la banda de conducción se encuentra prácticamente vacía de portadores de cargas eléctricas o electrones, mientras que la banda de valencia está completamente llena de estos.

Como ya conocemos, en medio de esas dos bandas se encuentra la “banda prohibida”, cuya misión es impedir que los electrones de valencia, situados en la última órbita del átomo, se exciten y salten a la banda de conducción.

La energía propia de los electrones de valencia equivale a unos 0,03 eV (electronvolt) aproximadamente, cifra muy por debajo de los 6 a 10 eV de energía de salto de banda (Eg) que requerirían poseer los electrones para atravesar el ancho de la banda prohibida en los materiales aislantes.

sábado, 1 de mayo de 2010

SEMICONDUCTORES Y AISLANTES

TIPOS DE SEMICONDUCTORES

Primero que nada tenemos que definir claramente lo que es un semiconductor el cual no es más que un material ya sea sólido o liquido con una resistividad intermedia entre la de un conductor y la de un aislador. Gracias a los semiconductores la tecnología del estado sólido a sido reemplazada por completo a los tubos al vació, estos materiales están formados por electrones externos de un átomo, y los cuales son conocidos como electrones de valencia.Existen dos tipos de semiconductores los de tipo N y los de tipo P y la unión de estos dos formando así un tercero llamado unión

SEMICONDUCTOR TIPO N

Este tipo de semiconductor trata de emparejar los materiales con respecto a sus cargas y lo realiza con enlace de impurezas a ambos materiales. Por lo tanto, la impureza puede donar cargas con carga negativa al cristal, lo cual nos explica el nombre de tipo N (por negativo).El material semiconductor de tipo N comercial se fabrica añadiendo a un cristal de silicio pequeñas cantidades controladas de una impureza seleccionada. A estas impurezas también se les llama contaminantes, claro así se le llaman a las impurezas que se agregan intencionalmente. Los contaminantes de tipo N mas comunes son el fósforo, arsénico y antimonio. A estos semiconductores se les conoce también como donadores, y como este nombre lo indica estos semiconductores pasas cargas a el material que le hace falta para así poder emparejar este material, y es por eso que se les conoce mayormente como donadores.SEMICONDUCTOR TIPO P:El semiconductor tipo P se produce también comercialmente por el proceso de contaminación, en este caso el contaminante tiene una carga menos que el semiconductor tipo N, entre los mas comunes podemos encontrar el aluminio, boro, galio y el indio. Conocidos como aceptores el cual contiene espacios y necesita que sean llenados para emparejar el material.

SEMICONDUCTOR UNION PN

Al combinar los materiales de tipo P y N se obtienen datos y cosas muy curiosas pero lo mas importante y relevante es la formación del tipo unión PN. Una unión se compone de tres regiones semiconductoras, la región tipo P, una región de agotamiento y la región tipo N. La región de agotamiento se forma al unir estos dos materiales y aquí es donde los átomos que le sobran al tipo N pasan a llenar los espacios que deja el tipo P así complementándose uno con otro. Lo mas importante de la unión es su capacidad para pasar corriente en una sola dirección.

CLASES DE AISLANTES

Antes que nada tenemos que definir claramente lo que es un aislante y no son mas que cualquier material que conduce mal el calor o la electricidad y que se emplea para suprimir su flujo, o sea, que las cargas se mueven con mucha dificultad.1 Son aquellos materiales en los cuales los electrones no se desprenden fácilmente, aún aplicando una diferencia de potencial, es decir, una presión eléctrica elevada.Las dos clases de aislantes mas importantes que existen son:

Aislantes Eléctricos.
Aislantes Térmicos.

AISLANTES ELÉCTRICOS

Como su nombre lo dice es perfecto para las aplicaciones eléctricas y sería aun mas perfecto si fuera absolutamente no conductor, pero claro ese tipo de material no existe. Los materiales empleados como aislantes siempre conducen algo la electricidad, pero presentan una resistencia al paso de corriente eléctrica hasta 2,5 × 1024 veces mayor que la de los buenos conductores eléctricos como la plata o el cobre. Un buen aislante apenas poseen electrones permitiendo así el flujo continuo y rápido de las cargas. En los circuitos eléctricos normales suelen usarse plásticos como revestimiento aislante para los cables. Los cables muy finos, como los empleados en las bobinas (por ejemplo, en un transformador), pueden aislarse con una capa delgada de barniz. El aislamiento interno de los equipos eléctricos puede efectuarse con mica o mediante fibras de vidrio con un aglutinador plástico. En los equipos electrónicos y transformadores se emplea en ocasiones un papel especial para aplicaciones eléctricas. Las líneas de alta tensión se aislan con vidrio, porcelana u otro material cerámico.La elección del material aislante suele venir determinada por la aplicación. El polietileno y poliestireno se emplean en instalaciones de alta frecuencia, y el mylar se emplea en condensadores eléctricos. También hay que seleccionar los aislantes según la temperatura máxima que deban resistir. El teflón se emplea para temperaturas altas, entre 175 y 230 ºC. Las condiciones mecánicas o químicas adversas pueden exigir otros materiales. El nylon tiene una excelente resistencia a la abrasión, y el neopreno, la goma de silicona, los poliésteres de poxy y los poliuretanos pueden proteger contra los productos químicos y la humedad.

AISLANTES TÉRMICOS

Los materiales de aislamiento térmico se emplean para reducir el flujo de calor entre zonas calientes y frías. Por ejemplo, el revestimiento que se coloca frecuentemente alrededor de las tuberías de vapor o de agua caliente reduce las pérdidas de calor, y el aislamiento de las paredes de una nevera o refrigerador reduce el flujo de calor hacia el aparato y permite que se mantenga frío.El aislamiento térmico puede cumplir una o más de estas tres funciones: reducir la conducción térmica en el material, que corresponde a la transferencia de calor mediante electrones; reducir las corrientes de convección térmica que pueden establecerse en espacios llenos de aire o de líquido, y reducir la transferencia de calor por radiación, que corresponde al transporte de energía térmica por ondas electromagnéticas. La conducción y la convección no tienen lugar en el vacío, donde el único método de transferir calor es la radiación. Si se emplean superficies de alta reflectividad, también se puede reducir la radiación. Por ejemplo, puede emplearse papel de aluminio en las paredes de los edificios. Igualmente, el uso de metal reflectante en los tejados reduce el calentamiento por el sol. Los termos o frascos Dewar impiden el paso de calor al tener dos paredes separadas por un vacío y recubiertas por una capa reflectante de plata o aluminio.El aire presenta unas 15.000 veces más resistencia al flujo de calor que un buen conductor térmico como la plata, y unas 30 veces más que el vidrio. Por eso, los materiales aislantes típicos suelen fabricarse con materiales no metálicos y están llenos de pequeños espacios de aire. Algunos de estos materiales son el carbonato de magnesio, el corcho, el fieltro, la guata, la fibra mineral o de vidrio y la arena de diatomeas. El amianto se empleó mucho como aislante en el pasado, pero se ha comprobado que es peligroso para la salud y ha sido prohibido en los edificios de nueva construcción de muchos países.En los materiales de construcción, los espacios de aire proporcionan un aislamiento adicional; así ocurre en los ladrillos de vidrio huecos, las ventanas con doble vidrio (formadas por dos o tres paneles de vidrio con una pequeña cámara de aire entre los mismos) y las tejas de hormigón (concreto) parcialmente huecas. Las propiedades aislantes empeoran si el espacio de aire es suficientemente grande para permitir la convección térmica, o si penetra humedad en ellas, ya que las partículas de agua actúan como conductores. Por ejemplo, la propiedad aislante de la ropa seca es el resultado del aire atrapado entre las fibras; esta capacidad aislante puede reducirse significativamente con la humedad.Los costes de calefacción y aire acondicionado en las viviendas pueden reducirse con un buen aislamiento del edificio. En los climas fríos se recomiendan unos 8 cm de aislamiento en las paredes y entre 15 y 20 cm de aislamiento en el techo.Recientemente se han desarrollado los llamados superaislantes, sobre todo para su empleo en el espacio, donde se necesita protección frente a unas temperaturas externas cercanas al cero absoluto. Los tejidos superaislantes están formados por capas múltiples de mylar aluminizado, cada una de unos 0,005 cm de espesor, separadas por pequeños espaciadores, de forma que haya entre 20 y 40 capas por centímetro.INTRODUCCIONEl siguiente trabajo de investigación que se presenta es sobre Conductores, Semiconductores y Aislantes, en el cual se maneja lo que es Teoría de Bandas de cada uno de los tres materiales, una lista de conductores del de mayor calidad al de menor, los tres tipos de semiconductores existentes que son muy útiles en nuestros tiempos y las diferentes clases de aislantes que como se vera mas adelante una de ellos nos ahorra grandes cantidades de dinero y muchos recursos.

Estructura de la materia, molécula, átomo, electrones, protones y neutrones.


Átomo

Aproximadamente 400 a.C., el filósofo griego Demócrito sugirió que toda la materia estaba formada por partículas minúsculas, discretas e indivisibles, a las cuáles llamó átomos. Sus ideas fueron rechazadas durante 2000 años, pero a finales del siglo dieciocho comenzaron a ser aceptadas.

En 1808, el maestro de escuela inglés, Jhon Dalton, publicó las primeras ideas "modernas" acerca de la existencia y naturaleza de los átomos. Resumió y amplió los vagos conceptos de antiguos filósofos y científicos. Esas ideas forman la base de la Teoría Atómica de Dalton, que es de las más relevantes dentro del pensamiento científico.

Los postulados de Dalton se pueden enunciar:

1. Un elemento está compuesto de partículas pequeñas e indivisibles llamadas átomos.
2. Todos los átomos de un elemento dado tienen propiedades idénticas, las cuales difieren de las de átomos de otros compuestos
3. Los átomos de un elemento no pueden crearse, ni destruirse o transformarse en átomos de otros elementos.
4. Los compuestos se forman cuando átomos de elementos diferentes se combinan entre sí en una proporción fija.
5. Los números relativos y tipos de átomos son constantes en un compuesto dado.


Partículas Fundamentales:

Las partículas fundamentales de un átomo son los bloques constituyentes básicos de cualquier átomo. El átomo, y por tanto toda la materia está formado principalmente por tres partículas fundamentales: electrones, neutrones y protones. El conocimiento de la naturaleza y la forma en que funcionan es fundamental para comprender las interacciones químicas.

La masa y las cargas de las tres partículas fundamentales se muestran en la siguiente tabla.




La masa del electrón es muy pequeña en comparación con la masa del protón o del neutrón. La carga del protón es de magnitud igual pero de signo opuesto a la carga del electrón. Procederemos a estudiar estas partículas con mayor detalle.

El Electrón

El electrón, comúnmente representado como e− es una partícula subatómica. En un átomo los electrones rodean el núcleo, compuesto de protones y neutrones. Los electrones tienen la carga eléctrica más pequeña, y su movimiento genera corriente eléctrica. Dado que los electrones de las capas más externas de un átomo definen las atracciones con otros átomos, estas partículas juegan un papel primordial en la química.

Historia y descubrimiento del electrón

La existencia del electrón fue postulada por G. Johnstone Stoney, como una unidad de carga en el campo de la electroquímica. El electrón fue descubierto por Thomson en 1897 en el Laboratorio Cavendish de la Universidad de Cambridge, mientras estudiaba el comportamiento de los rayos catódicos. Influenciado por el trabajo de Maxwell y el descubrimiento de los rayos X, dedujo que en el tubo de rayos catódicos existían unas partículas con carga negativa que denominó corpúsculos.

Aunque Stoney había propuesto la existencia del electrón fue Thomson quién descubrió su caracter de partícula fundamental. Para confirmar la existencia del electrón era necesario medir sus propiedades, en particular su carga eléctrica. Este objetivo fue alcanzado por Millikan en el célebre experimento de la gota de aceite realizado en 1909.

George Paget Thomson, hijo de J.J. Thomson, demostró la naturaleza ondulatoria del electrón probando la dualidad onda-corpúsculo postulada por la mecánica cuántica. Este descubrimento le valió el Premio Nobel de Física de 1937.

El spin del electrón se observó por vez primera en el experimento de Stern-Gerlach. Su carga eléctrica puede medirse directamente con un electrómetro, y la corriente generada por su movimiento con un galvanómetro.

Propiedades y comportamiento de los electrones

El electrón tiene una carga eléctrica negativa de −1.6 × 10−19 culombios y una masa de 9.10 × 10−31 kg (0.51 MeV/c2), que es aproximadamente 1800 veces menor que la masa del protón. El electrón tiene un spin 1/2, lo que implica que es un fermión, es decir, que se le puede aplicar la estadística de Fermi-Dirac.

Aunque la mayoría de los electrones se encuentran formando parte de los átomos, los hay que se desplazan independientemente por la materia o juntos formando un haz de electrones en el vacío. En algunos superconductores los electrones se mueven en pareja.

Cuando los electrones que no forman parte de la estructura del átomo se desplazan y hay un flujo neto de ellos en una dirección, este flujo se llama corriente eléctrica. La electricidad estática no es un flujo de electrones. Es más correcto definirla como "carga estática", y está causada por un cuerpo cuyos átomos tienen más o menos electrones de los necesarios para equilibrar las cargas positivas de los núcleos de sus átomos. Cuando hay un exceso de electrones, se dice que el cuerpo está cargado negativamente. Cuando hay menos electrones que protones el cuerpo está cargado positivamente.

Si el número total de protones y electrones es equivalente, el cuerpo está en un estado eléctricamente neutro. Los electrones y los positrones pueden aniquilarse mutuamente produciendo un fotón. De manera inversa, un fotón de alta energía puede transformarse en un electrón y un positrón.

El electrón es una partícula elemental, lo que significa que no tiene una subestructura (al menos los experimentos no la han podido encontrar). Por ello suele representarse como un punto, es decir, sin extensión espacial.

Sin embargo, en las cercanías de un electron pueden medirse variaciones en su masa y su carga. Esto es un efecto común a todas las partículas elementales: la partícula influye en las fluctuaciones del vacío en su vecindad, de forma que las propiedades observadas desde mayor distancia son la suma de las propiedades de la partícula más las causadas por el efecto del vacío que la rodea.

Hay una constante física llamada radio clásico del electrón, con un valor de 2.8179 × 10−15 metros. Es preciso tener en cuenta que éste es el radio que se puede inferir a partir de la carga del electrón descrito desde el punto de vista de la electrodinámica clásica, no de la mecánica cuántica. Por esta constante se refiere a un concepto desfasado, aunque útil para algunos cálculos.

El Protón

Partícula nuclear con carga positiva igual en magnitud a la carga negativa del electrón; junto con el neutrón, está presente en todos los núcleos atómicos. Al protón y al neutrón se les denomina también nucleones. El núcleo del atómo de hidrógeno está formado por un único protón. La masa de un protón es de 1,6726 × 10-27 kg, aproximadamente 1.836 veces la del electrón. Por tanto, la masa de un átomo está concentrada casi exclusivamente en su núcleo. El protón tiene un momento angular intrínseco, o espín, y por tanto un momento magnético. Por otra parte, el protón cumple el principio de exclusión.

El número atómico de un elemento indica el número de protones de su núcleo, y determina de qué elemento se trata. En física nuclear, el protón se emplea como proyectil en grandes aceleradores para bombardear núcleos con el fin de producir partículas fundamentales. Como ion del hidrógeno, el protón desempeña un papel importante en la química.

El antiprotón, la antipartícula del protón, se conoce también como protón negativo. Se diferencia del protón en que su carga es negativa y en que no forma parte de los núcleos atómicos. El antiprotón es estable en el vacío y no se desintegra espontáneamente. Sin embargo, cuando un antiprotón colisiona con un protón, ambas partículas se transforman en mesones, cuya vida media es extremadamente breve. Si bien la existencia de esta partícula elemental se postuló por primera vez en la década de 1930, el antiprotón no se identificó hasta 1955, en el Laboratorio de Radiación de la Universidad de California.

Los protones son parte esencial de la materia ordinaria, y son estables a lo largo de periodos de miles de millones, incluso billones, de años. No obstante, interesa saber si los protones acaban desintegrándose, en una escala temporal de 1033 años o más. Este interés se deriva de los actuales intentos de lograr teorías de unificación que combinen las cuatro interacciones fundamentales de la materia en un único esquema.

Muchas de las teorías propuestas implican que el protón es, en último término, inestable, por lo que los grupos de investigación de numerosos aceleradores de partículas están llevando a cabo experimentos para detectar la desintegración de un protón. Hasta ahora no se han encontrado pruebas claras; los indicios observados pueden interpretarse de otras formas.

El Neutrón

El Neutrón es una partícula eléctricamente neutra, de masa 1.838,4 veces mayor que la del electrón y 1,00014 veces la del protón; juntamente con los protones, los neutrones son los constitutivos fundamentales del núcleo atómico y se les considera como dos formas de una misma partícula: el nucleón.

La existencia de los neutrones fue descubierta en 1932 por Chadwick; estudiando la radiación emitida por el berilio bombardeado con partículas, demostró que estaba formada por partículas neutras de gran poder de penetración, las cuales tenían una masa algo superior a la del protón.

El número de neutrones en un núcleo estable es constante, pero un neutrón libre, en decir, fuera del núcleo, se desintegra con una vida media de unos 1000 segundos, dando lugar a un protón, un electrón y un neutrino.

En un núcleo estable, por el contrario, el electrón emitido no tiene la energía suficiente para vencer la atracción coulombiana del núcleo y los neutrones no se desintegran. La fuente de neutrones de mayor intensidad disponible hoy día es el reactor nuclear. El proceso fundamental que conduce a la producción de energía nuclear es la fisión de un núcleo de uranio originado por un neutrón: en la fisión el núcleo se escinde en dos partes y alrededor de tres neutrones por término medio (neutrones rápidos); los fragmentos resultantes de la escisión emiten, además otros neutrones.

Los neutrones como todas las radiaciones, producen daños directos, provocando reacciones nucleares y químicas en los materiales alcanzados. Una particularidad de los neutrones es la de producir en los materiales irradiados sustancias radioactivas de vida media muy larga. De ahí que los daños más graves producidos por las explosiones nucleares sean los provocados por neutrones en cuanto que las sustancias transformadas en radiactivas por su acción pueden ser asimiladas por organismos vivientes; pasado cierto tiempo, estas sustancias se desintegran y provocan en el organismo trastornos directos y mutaciones genéticas